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Abstract

We present an algorithm for segmenting a discrete three-dimensional
point-set (i.e. partitioning an input discrete point-set i nto appropriate
subsets). The algorithm consists in the iteration of two mai n steps which
are: �tting the parameters of template primitives from a use r-speci�ed list
of primitives and extracting the points from the input point -set match-
ing the best �tted primitive. We illustrate the results of ap plying our
algorithm to several examples of three-dimensional point-sets.

Keywords: Surface �tting; Segmentation; Surface, solid and object
representations; Simulated Annealing

1 Introduction

We present an algorithm for segmenting a discrete set of points scattered on
the surface of a three dimensional object. Segmenting a point-set consists in
grouping the input points into appropriate subsets.

Segmentation is useful in reverse engineering, where a geometrical model of
an object is reconstructed from points acquired on the surface of the object by
a laser scanner (or any other acquisition device). The segmentation process is
also useful in several other geometry processing applications such as: re-meshing
and simpli�cation, geometry compression, feature recognition or symmetry de-
tection.

The algorithm presented in this paper consists in iteratively repeating two
main steps which are: �tting template primitives from a speci�ed set o f can-
didate template primitives and extracting the points corresponding to the best
�tted primitive at each iteration. We also include some information on r elated
sub-problems that need to be solved during the pre- or post-processing steps to
improve the results of the segmentation.

1.1 Related works

Several approaches have been proposed in the computer vision community for
segmenting range images by �tting primitive shapes. In [16], a region growing
approach is used where surfaces are �tted to several seed regions and surfaces en-
compassing adjacent pixels to the seed region are extended. In [32], superquadric
shapes are recovered from range images by growing seed primitivesand selecting
a suitable subset according to a MDL (minimum description length) principle.
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In [39], improved algorithms for least-square �tting of several common primi-
tives (spheres, cylinders, cones and tori) are investigated. All these algorithms
usually exploit the connectivity information given by the image grid, while our
approach is targeting a discrete point-set that lacks any explicit connectivity
information.

In [24], Johnson and Hebert propose an algorithm for identifying in a scene
models from a library. The input scene is given as a triangle mesh as arethe
models from the library. For each vertex in the scene, the spin image(a shape
descriptor see [23]) of the vertex is computed and compared against the spin
image of the models from the library. While this algorithm can recognizeobjects
in a scene, it does not attempt to di�erentiate between several similar objects
in a scene, neither does it try to �t primitives parameters.

In [59], an algorithm is presented for �tting a superellipsoid model combined
with transformations (bending and tapering) to a point-set. The optimization
of the parameters of the superellipsoid and the transformations isdone with
a stochastic algorithm: the simulated annealing. They use a variant of the
simulated annealing algorithm with a fast cooling schedule due to Lester Ingber
(see [22]). This work has some similitude with the method presented here. In
[59], only the part consisting of �tting the primitive is discussed. Segmentation
is done separately by a method discussed in [60], which works by analogy with
the distribution of electrical charges on an object. This segmentation method
requires the input point-set to be triangulated (the triangle mesh is used to
integrate a potential by �nite element). It is not clear that this app roach would
work on objects with planar elements like for example some of the models shown
in Fig. 3.

Lavoue et al. [30] compute the curvature tensor of an input triangle mesh
and use the curvature information to decompose the object into surface patches.
The patch boundaries are then recti�ed to obtain a better segmentation close
to the patch edges. In [31] the same authors use a region growing method
taking seed clusters obtained from thek� means clustering algorithm and using
the curvature tensor approximated from the triangle mesh. Boundaries of the
di�erent patches are then recti�ed during post-processing. These approaches
are designed for processing triangle meshes as input. Connectivityprovided
by the mesh is used for approximating the curvature tensor and rectifying the
patches during post processing. On the other hand our algorithm isdesigned to
work with discrete point-sets and can also potentially handle noise and outliers
in the input data.

In reverse engineering, segmentation and surface recovery techniques are ei-
ther bottom-up or top-bottom approaches [56]. Bottom-up approaches start
from seed points and use a region growing technique. One of the problems of
the bottom-up approach is the di�culty to select seed points. Anot her di�-
culty is to decide whether to add points in a given region, since the decision
is done locally which is susceptible to noise. A bottom-up approach is used in
the system described in [5] for reconstructing a boundary representation from
an unorganized point-set. However, their method is based on computing a deci-
mated triangulation of the input point-set, which may be ill-de�ned wh en noise
is present in the point-set. Our method operates directly on the input point-set
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and does not require any intermediate triangulation. Top-bottom approaches
are more common in image segmentation than in surface segmentation. If all
points belong to one surface, then the method terminates. Otherwise, points
are subdivided into two sets, and the former test is recursively done for each
new set. The main di�culty of the top-bottom approach is to decide w here and
how to subdivide. In practice a merging step is also needed for merging sets
that were improperly separated.

In [55], an approach for segmentation of polygonal mesh obtained from tri-
angulation of scanned data is presented. The proposed algorithm isusing Morse
theory to obtain a structure where triangles of the input mesh have been labelled
to belong to a primary region or the separator set. This separatorset is then
re�ned to a smooth curve network forming a feature skeleton. This skeleton is
used to compute the region boundaries and compute the �nal surface structure.
Surface �tting can �nally be applied to the obtained surface struct ure. In our
approach, we are trying not to rely on a triangulation of the input po int-set as
it can be a di�cult task. Experiments with scanned data and triangula tion (or
reconstruction) algorithms showed us that getting the triangulation right can
be di�cult. Additionally, instead of �rst segmenting the input data an d then
�tting primitives to each region, we are trying to do both tasks simult aneously.

Segmentation of point-set and triangle meshes became in the recent years a
topic of interest in the computer graphics community (see e.g. the survey of
mesh segmenting algorithm by Shamir [45] and the references therein). Usually
these works are interested in partitioning the input point-set or tr iangle mesh
but not in �tting primitives to each identi�ed subset.

The approaches proposed by Cohen-Steiner et al. [9], Wu and Kobbelt [58]
and Yan et al. [62] rely on variational shape approximation where triangle
mesh models are approximated by proxies. The �rst approach usesonly planes
as proxies. The second approach adds spheres, cylinders and rolling-ball blends
as possible proxies. And the last one extends the set of possible proxies to all
quadric surfaces. These methods require connectivity information provided by
the input triangle mesh and are also sensitive to noise as they rely on least
square �tting. Furthermore, the number of clusters in the outpu t model has to
be provided as an input to the algorithm.

Yamauchi et al. [61] proposed a mesh segmentation algorithm basedon a
clustering of the normals to the surface performed by an adaptation of the mean
shift algorithm, an algorithm originally developed for segmentation of images
[10]. Segmentation is then performed by an iterative region growing algorithm.

The algorithm described by Lai et al. [28] consists in a feature sensitive
re-meshing [29] of the initial triangle mesh and then performs a segmentation
with k� means clustering using an appropriate metric (i.e. a metric taking into
account curvature and texture information of the original triang le mesh). This
algorithm is limited to triangle meshes only. Lai et al.[27] proposed an extension
of the "random walk" algorithm, originally used for image segmentation [20], for
segmenting triangle meshes and point-sets. They demonstrate the possibility to
segment both engineering and freeform objects in an interactive way. The inter-
active algorithm relies on seeds positioned by a user: the user needsto decide
where to place these seeds and how many seeds to be placed. They propose
also a method for automatically generating seeds and merging the computed
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segmented subsets, however this method is described for trianglemeshes only.
Tal and Zuckerberger use and segmentation and �tting of basic primitives

in [53] as an intermeditate step of their mesh retrieval algorithm. Segmentation
is done �rst by either a greedy convex decomposition method (see [8]) or by
watershed decomposition (see [37]). Primitives (sphere, cone, plane or cylinder)
are then �tted using the Levenberg-Marquardt method [33, 38].

Gelfand et al. present in [19] a method to detect slippable shapes. Slippable
shapes are de�ned as rotationally and translationally symmetrical shapes and
include: sphere, planes, cylinders, linear extrusions, surfaces ofrevolution, and
helix. The presented method is bottom-up and works by merging initial slip-
pable surfaces. Their algorithm is sensitive to the selection of the size of the
initial patches, which is hard to determine.

The work by Schnabel et al. in [44] presents an algorithm that uses RANSAC
[15] for segmenting mesh and point-cloud. Their algorithm is robust against
noise and introduce several types of speed optimization. Li et al.[34] improved
the objective function used in the previous work for penalizing complex shape
primitives. Primitives available in these systems are limited to: planes, spheres,
cylinders, cones and tori. A closely related technique is proposed byAttene et al.
in [2]: primitives from a �nite set (plane, sphere, cylinder) are locally �t ted and
used to hierarchally cluster faces on a triangle mesh model. This workextends
the face clustering algorithm of Garland et al. [18] with additional primitives.
To keep their method fast, the authors have decided to restrict their primitives
to the ones that can be directly �tted to data. Their method as described is
limited to triangle meshes and requires the number of segments to begiven by
the user.

Li et al. presented recently in [35] an algorithm for globally consolidating the
results obtained by the RANSAC method [44]. In their algorithm, local �tting
of primitives with RANSAC is combined with a global approach, where mutual
relations between primitives (e.g. coplanarity, orthogonality) are discovered
and enforced through constrained minimization. While the approachused is
di�erent, constrained �tting of primitive has been discussed before in the work
of Benko et al. [4]. We believe that such techniques could be used in addition to
the methods presented in this paper to further improve and re�nethe parameters
of the �tted primitives.

1.2 Overview and Contributions

We investigate in this paper a direct method for segmenting �nite point-sets,
where the segmentation step and primitive �tting are performed at the same
time. At each iteration of the algorithm, parameters of template primitives
are optimized to �t a subset of the point-set. The �tted primitives a nd their
associated subset are then compared to each other, the best one is selected as
a potential candidate and the points lying within a band around the surface
of the primitive are extracted from the point-set. These steps are iterated
until the size of the point-set is su�ciently small or a maximum number of
iterations has been reached. We introduce in this work a new objective function
for �tting primitives to a point-cloud that can handle outliers. Finally, it is
important to note that our algorithm works on unorganized point-sets and does
not require any additional information provided by triangle meshes. Computing
a triangulation of an unorganized input point-set can be a di�cult tas k. For

4



scanned data, the presence of outliers and the di�culty to consistently orient
normals on the point-set require special care when computing a triangulation.
While our approach relies on normal information, we do not need a consistent
orientation. As shown in this paper, our approach tolerates noise inthe input
data; combination with pre-processing denoising algorithm can improve the �nal
result.

Recently, modeling systems with extensible set of primitives and operations
have been reported, for example [42]. To allow such systems to e�ectively work
with scanned data, segmentation and constructive model recovery have to be
based on an arbitrary set of primitives as well. This is the main motivation for
introducing our approach.

In the rest of this paper we start by describing our segmentation algorithm in
section 2. Then, we detail its main components: pre-processing steps (in section
3), primitive �tting and the objective functions used (in section 4), and selection
of primitives and subsets (in section 5). Finally, we apply our algorithm to
various point-sets, discuss its sensitivity to parameters and to noisy input data
in section 6.

2 Overview of the segmentation algorithm

The complete segmentation algorithm is given in pseudo-code form below (see
Algorithm 1). The inputs to this algorithm are: the discrete point-se t S to
be segmented and a set of parametrized primitivesF . Examples of primitives
used in our experiments are discussed in section 6; generally each primitive
is de�ned by the distance function (or its approximation) to the sur face and
is controlled by a vector of unknown parameters. For example, theprimitive
corresponding to a parametrized sphere would be:f ((x; y; z); (x0; y0; z0; r )) :=
r �

p
(x � x0)2 + ( y � y0)2 + ( z � z0)2, where (x; y; z) corresponds to the point

at which the distance to the surface is evaluated and (x0; y0; z0; r ) is a vector of
parameters that corresponds respectively to: the center of the sphere (x0; y0; z0)
and its radius r . The output of the algorithm is a segmented point-set, where
each point is assigned a label (i.e. an index corresponding to the segment it
belongs to), a type of primitive (the primitive associated to that poin t) and
optionally a list of parameters for the primitive.

The �rst part of Algorithm 1 (line 1) is a pre-processing step where we com-
pute an approximation of the normals if they are absent from the input point-
cloud, and where we apply algorithms to denoise the initial point-set.Compu-
tation of normals helps improving the segmentation result. For the purpose of
segmentation, the consistent orientation of the normals is not needed but only
their direction. Consistent orientation of normals is a di�cult problem as ex-
plained in [21]. De-noising helps improve the segmentation results whennoise
is present in the input point-set as we illustrate experimentally in section 6. We
give more details on this �rst pre-processing step in section 3 below.

The main part of the algorithm is the segmentation loop in the lines 2 to
11. Termination of the loop occurs when the size of the remaining point-set
(denoted by S:size in the algorithm) is below some user de�ned threshold� S .
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In all our experiments, we used one percent of the size of the original point-set
as a threshold: � S = 0 :01 � S:size. At each iteration, for each primitive from
the set of available primitives F , we try to �t the parameters of the current
primitive to a subset of the current point-set. This is done by optimization of
an objective function that takes into account the distance between the surface
of the primitive and the candidate subset as well as the deviation between
the gradient of the primitive and the normal at each point of the point-set.
The choice of the objective function and the algorithms used for �tting the
parameters of the primitives are described in section 4 (see Algorithm 2).

For each primitive with optimized parameters, we then identify neighboring
points in the current point-set lying within a band � d around the surface of
the primitive (lines 4 to 6). The primitive maximizing this number of points is
selected and the associated points are removed from the point-set, decreasing
its size. We store the type of the selected primitive (e.g. \sphere",\plane", . . . )
as well as a label (e.g. segment 1, segment 2, . . . ) for the points belonging to
this subset (lines 7 to 10). This part of the algorithm is described with more
details in section 5.

Finally, during post-processing (line 12) we associate to each unidenti�ed
point from the original point-set a primitive type and a label by iterat ing through
the list of best primitives identi�ed in the main loop (line 10) and selecting the
primitive best matching the point. The term \best matching primitive" for a
point refers to the primitive that minimizes the distance to the surface of the
primitive and the deviation between the normal at this point and the gradient
of the primitive at the same point.

Algorithm 1 Segmentation of a discrete point-set using a set of templates
Require: Point-set S, list of primitives F

1: Pre-processing: normals estimation and denoising.
2: while S:size > � S do
3: Fit each primitive f 2 F (see Algorithm 2).
4: for each �tted primitive �f do
5: Identify the subset of neighboring points �S from S within a band � d

around the surface de�ned by �f = 0 (see Algorithm 3 and section 5).
6: end for
7: Select the primitive �f opt , corresponding to the subset of maximum size

�Sopt .
8: Add it to the list of best �tted primitives B : B  B

S �f opt .
9: Store the type (of primitive) and the label for the identi�ed points: �Sopt .

10: Remove the identi�ed points from the point-set: S  Sn�Sopt .
11: end while
12: Post-processing: assign a type and label to each remaining point inS (if

any) using the best matching primitive from B .
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3 Pre-processing

The pre-processing stage consists of two steps described below:normals estima-
tion and denoising.

3.1 Normals estimation

We estimate the normal direction at a point x of the input point-set by �tting
the best plane using linear least square �tting over thek-nearest neighbors of
x (in our experiments we usedk = 20). We do not need to ensure consistent
orientation of the normals on the surface since our algorithm uses only the
normals direction as explained in sections 4 and 5. For noisy point-sets, we
are estimating normals using the approach described by Mitra et al in[40] (see
Algorithm 1 in their paper).

3.2 Denoising

To some extent our algorithm can naturally handle noise without any denoising
pre-processing step since it is grouping points within a distance� d around the
surface of the possible primitives (see for example the numerical experiments
in section 6.3). However, for objects corrupted by severe noise,an increase
of � d may not be su�cient and give poor results (such as failure to detect
some features). In this case, applying a denoising algorithm in a pre-processing
step can improve the results. We illustrate this experimentally in section 6.
For our purposes, the smoothing algorithms described by Jones etal. in [25]
or Fleishman et al. in [17] give su�ciently good results. The connectivity
information needed in these algorithms can be replaced in our case byk-nearest
neighbor queries. Once the point-set has been smoothed, we needto re-estimate
the normals since the positions of the points have changed (the �rst normal
estimation is needed by the above mentioned denoising algorithms). Several
other existing denoising algorithms could also be applied (see for example [50, 51]
and references therein).

4 Primitives �tting and objective functions

For each parametrized primitive from the set of user-de�ned primitives, we
search for the primitive's parameters optimizing an objective function. The
objective function is used to evaluate how a primitive is matching a given point-
set for a given vector of parameters.

In the experiments described in this paper (see section 6.2), we used as an
example the following primitives: sphere, cylinder, cone, torus, plane and super-
ellipsoid. Each primitive is de�ned by a function f of point coordinates (x; y; z)
and a vector of parametersp that controls the shape of the primitive. Given
a vector of parametersp, evaluating f (x; y; z; p) returns (an approximation of)
the Euclidean distance to the surface of the primitive (corresponding to f = 0).
For the primitives used in our experiments, the number of parameters varies
between 3 and 8 (see Table 1 in section 6.2). It is of course possible tochange
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or extend this set of primitives. We are giving more details on the primitives
used in our experiments and their parameters in section 6.2.

When possible, we are using the exact Euclidean distance function for the
primitives. This restricts however the number of primitives that can be used. It
is possible to compute an approximation of the Euclidean distance function close
to the surface boundary: existing approaches include the Taubin approximation
[54] and normalization (originally from Rvachev [43], see also [46] and references
therein). In �tting application, Euclidean distance function should u sually be
preferred over algebraic distance function as shown and discussed by Faber and
Fisher [13, 12].

Fitting the parameters of the primitives is the �rst step of Algorithm 1 (line
3). Our algorithm for �tting the primitives parameters is based essentially on
two steps: the �rst step is an optimization of an objective function done by the
simulated annealing algorithm [11]. The second step corresponds to are�nement
of the optimized parameters done by the Levenberg-Marquardt algorithm [33,
38] using as a starting point the optimized parameters from the previous step
(i.e. the parameters obtained after the simulated annealing algorithm) and a
reduced point-set. The �tting step is summarized in Algorithm 2 below.

Algorithm 2 Template primitives �tting
1: for each primitive f 2 F do
2: Find the parameters popt of f maximizing the objective function

E1(p; f; ~S) by using the simulated annealing algorithm [11].
3: Identify the subset �S from S corresponding to neighboring points ofS

within a distance � d to the surface implicitly de�ned by f = 0 and with a
deviation between the normal at the point and the gradient of f bounded
by � (see Algorithm 3).

4: Find the parameters popt of f minimizing the objective function
E2(p; f; �S) by using the Levenberg-Marquardt algorithm.

5: end for

For the �rst iteration of primitives �tting initial parameter values fo r popt are
determined by averaging the bounds on the possible values for these parameters
(these bounds vary for each primitive). From one iteration to the other (of
the loop in Algorithm 1), we start from the previous parameter values if the
primitive was not selected, otherwise we use the average of the bounds.

The goal of the �rst step in Algorithm 2 (line 2) is to �nd some good ap-
proximate values for the parameters of the currently investigated primitive f
that will later be used as a starting point for the Levenberg-Marquardt algo-
rithm (line 4). In general, algorithms for non-linear optimization, such as the
Levenberg-Marquardt algorithm or the Gauss-Newton algorithm, su�er from
being trapped in local optima if the initial guess is not su�ciently close t o the
sought solution. To help avoid getting trapped in local optima, parameters of
the primitive are initially �tted with the simulated annealing algorithm. Fo r our
experiments, we have implemented the simulated annealing algorithm described
in [11]. We are using the following cooling schedule:T(i ) = T0r i

T , that gives the
temperature T of the system at iteration i . T0 is the initial temperature of the
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system andrT the reduction factor (rT < 1:0). Values for these parameters are
discussed in the section on experiments (see Section 6). There arealternative
versions of the simulated annealing algorithm with faster cooling schedule that
can be used instead such as the fast (exponential) cooling scheduleproposed by
Ingber in [22].

For a given parametrized primitive f and a given point-cloud ~S, we propose
to obtain the parameters of f by maximizing the objective function E1:

E1(p; f; ~S) :=
NX

i =1

exp(� di (p)2) + exp(� � i (p)2) (1)

where N is the number of points in the point-set ~S, ~S is a subsampling of the
original point-set S (selection of ~S is discussed in section 6),di (p) = f (x i ;p )

� d
,

� i (p) = ArcCos ( jr f (x i ;p ) � ~n i j )
� and x i 2 ~S. This objective function is maximized

for the vector p of unknown parameters of the current primitive f . With this
objective function, the points x i from the input point-set are smoothly penalized
when they are at a distance greater than� d and with a deviation between the
normal at this point and r f (r f is the gradient of f with respect to the
coordinates (x; y; z)) at x i greater than � (� is another user-de�ned parameter,
see section 6).

In Eq. 1 the two terms are given equal weight as we did not see any particular
reason to favor one term over the other. We performed some experiments with
di�erent weights (for example a higher weight for the distance error than for
the normal deviation) but did not see any signi�cant di�erence.

The reason for using such an objective function can be illustrated by consid-
ering the problem of �tting a plane to points sampled on a cube. Solvingthis
problem by using least square �tting will generate an undesirable result: the
best �tted plane will not match any of the faces of the cube but rather will cut
through the cube. This fact is illustrated in two dimensions with Fig. 1. In
these images, points are regularly sampled on the edges of a square. We try to �t
a line to one of the edges of the square. A line is de�ned by:nx x + ny y + d = 0.
The two parameters controlling the shape of the line are: the distanced and the
angle � (in polar coordinates) such that nx = cos(� ) and ny = sin (� ). The left
image shows the result of �tting the line to the sampled points in the least square
sense. In this case, the parameters de�ning the line were obtainedby minimiz-
ing:

P
i f 2(x i ; p), where x i are the points sampled on the square,p is the vector

of unknown parameters de�ning the line (d and � ) and f () corresponds to the
Euclidean distance from x i to the line de�ned by the parameters p. To pro-
duce this �gure, the minimization was done by using the function NMinimize of
Mathematica [57], set to use the simulated annealing algorithm as its optimiza-
tion algorithm. On the other hand, the right image shows the result of the �tted
line obtained by maximizing:

P
i exp(� di (p)2), where di (p) := f (x i ;p )

� d
with f (),

x i and p having the same de�nition as above and� d = 0 :007� l , with l being
the length of the diagonal of the object bounding box. The maximization was
done by using the function NMaximize of Mathematica, which was set to use
the simulated annealing algorithm as its optimization algorithm.

9



Figure 1: Fitting the parameters de�ning a line to points regularly sampled on
a square. The parameters on the left are �tted in the least squaresense (i.e. by
minimizing

P
i f 2(x i ; p)). The parameters on the right are �tted by maximizingP

i exp(� di (p)2).

Usage of a decreasing exponential in the objective functionE1 acts similarly
to counting the number of points (x i ) which are within a distance � d to the
surface represented byf = 0 for a given set of parametersp.

In order to decrease the time spent in the �rst optimization step (lin e 2 of
Algorithm 2), we do not use the original point-set S but a subset ~S � S.
Computing this subset can be done in di�erent ways: by random sub-sampling
(i.e. randomly selecting points from the initial set), by grid clustering (i.e. by
considering a regular grid covering the input point set and arbitrarily selecting
as a cluster one point in each cell) or by k-means clustering. In our experiments,
we obtained su�ciently good results with random sub-sampling. The size of ~S
was determined by experimenting with various models and looking at the impact
on speed and accuracy of �tting. Values used in our experiments are given in
section 6.

The second step of Algorithm 2 (line 3) consists in identifying the points
x 2 S such that j f (x) j� � d and ArcCos(j r f (x) � n j) � � (where n is the
normal associated to the pointx). Note that when evaluating f (x) (and r f (x))
we use the value of the parameterspopt found by optimization in the previous
step.1. For the computation of the deviation between the gradient of f and the
normal at a given point, we use the fact that f is a distance function (or at
least an approximation that can be obtained for example by normalization as
in [46]). We further restrict this initial set of candidate points by ext racting
the maximum subset (maximum in size) of neighboring points satisfyingthe
two conditions above. Given a point, we consider itsk-neighborhood (in our

1We are omitting to explicitly mention the dependency to p in f to simplify the notation.
In this step the parameters p are �xed and equal to popt .
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experiments we usedk = 20) as the list of points to be explored next in the
search algorithm and continue as long as the two conditions above are met (a
pseudo code corresponding to this algorithm is given in section 5, seeAlgorithm
3). k-neighborhood information is e�ciently obtained by registering the in put
point-set in a Kd-tree data-structure [6].

The last step of Algorithm 2 (line 4) consists in �ne tuning the parameterspopt

obtained at the end of the �rst step. For that purpose we apply the Levenberg-
Marquardt algorithm for minimizing: E2(p; f; �S) :=

P N 2
i =1 (1� exp(� di (p)2))2 +

(1� exp(� � i (p)2))2, whereN2 is the size of the subset�S extracted in the previous
step (line 3 of Algorithm 2), di (p) = f (x i ;p )

� d
, � i (p) = ArcCos ( jr f (x i ;p ) � ~n i j )

� and
x i are the points in �S. E2 is similar to E1 but rewritten to be used in a least
square problem minimization. At the end of this process, we have a listof �tted
primitives: �f 1 : : : �f n , where n is the size of the list of available primitives. For
example, if we were using as primitives: sphere, plane and cylinder, then we
would have n = 3.

5 Selection of the optimal �tted primitive and
point-set update

Selection of the best primitive among the set of �tted primitives �f 1 : : : �f n and
update of the current point-set are done in the lines 4 to 10 of Algorithm 1.
Given each �tted primitive �f i , we search for the subset of maximum size�Si of S
made of points close to the primitive's surface. We further constrain the search
by selecting only points within a local neighborhood. To accelerate the search
we register the input point-set in a Kd-tree data-structure [6] that allows for
e�cient queries for neighbouring information. The optimal primitive is then the
primitive corresponding to the subset of maximal size.

For each �tted primitive �f i , we search for the subset of maximum size�Si of
neighboring points from S such that for each point x 2 �Si : j �f i (x) j� � d and
ArcCos(j grad( �f i (x)) � n j) � � (where n is the normal associated to the point
x). This is done by using a modi�cation of the breadth �rst search algorithm as
described in Algorithm 3 below. We are constraining the search to neighboring
points in order to avoid situation where a given primitive could be close to
several parts of a point-set, without being a good match for the point-set as a
whole. For example, consider points sampled on a cube, within a su�ciently
large value of � d a cylinder could be close to several points on each face of a
cube. If we were to compare this cylinder against a plane �tted to one of the
cubes' face, in terms of counting the number of points from the point-set close
to the primitive's surface (cylinder or plane), the cylinder would get a better
score while being a worse descriptor than the plane.

However, this approach does not always work. There are cases where points
belong to a same primitive but are not all neighbours. An example of such case
appears in Fig. 4 for the double torus (top row, middle). We do not know if
there is any perfect solution for this problem. Practically, we have added an
option in our implementation for selecting whether we want or not connected
points for a primitive type. In our experiments, we have turned this option on
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for planes but not for the other primitives (for the example of the double torus
common planes are shared).

Algorithm 3 Extraction of �Si from S

1: Mark each point x j 2 S such that: j �f i (x j ) j� � d and ArcCos(j r �f i (x j ) �
n j j� � ).

2: for each marked and unlabeled pointx j do
3: Assign the current label to x j .
4: Enqueue thek-nearest neighbors ofx j

5: while the queue is not emptydo
6: Dequeue the �rst element.
7: if it is a marked element then
8: Assign the current label to it.
9: Enqueue its k-nearest neighbors.

10: end if
11: end while
12: Increase the label index.
13: end for
14: Return the maximum set of points with the same label.

Note that Algorithm 3 for selecting the maximum subset of S for a given
primitive �f i is also used as an intermediate step (line 3) in Algorithm 2.

Once a subset�Si has been selected for each �tted primitive �f i , we select among
all those sets the one containing the maximum number of points. In Algorithm
1, this set of points is called �Sopt . The corresponding optimized primitive is
called �f opt .

The best primitive selected at each iteration of the main loop in Algorithm 1
is added to the list of best �tted primitives found so far (line 8 of Algor ithm 1).
This list is used to assign to a given subset the points from the input point-set
S that have not yet been assigned to any of the existing subsets (line12 in
Algorithm 1). Finally, the current point-set S is updated by removing all the
points that belong to �Sopt (line 10 in Algorithm 1).

6 Results

6.1 Setup

The algorithms described in this paper have been implemented in C++ and
tested on a Sun workstation with 8GB of memory and an Intel Xeon processor
(2.8 GHZ).

In all the experiments below and unless it is stated otherwise, we used the
following suggested default values for the algorithm parameters:� d = 0 :007� l
(where l is the length of the diagonal of the object bounding box) 2, � =
15 degree, and the 20 closest neighbors are used to compute the number of
points in a subset. In addition to these parameters, we used the following

2 In the rest of the paper, we usually omit l to simplify the notation.
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parameters for the simulated annealing algorithm: an initial temperature of
T0 = 100 and a temperature reduction of rT = 0 :85. We use the following
cooling schedule:T(i ) = T0r i

T , giving the temperature T of the system at the
iteration i . Our implementation of the simulated annealing algorithm follows
the algorithm described by Corona et al. in [11]. Finally, we used a random
subsampling of 2000 points.

6.2 List of primitives

In our experiments, we used the following primitives: sphere, cylinder, plane,
cone, torus and super-ellipsoid [3]. Since the method is general, it is possible
to use other primitives like for example a combination of a primitive (e.g. a
super-ellipsoid) with transformations like tapering or twisting [59]. Wit h the
exception of the super-ellipsoid primitive, we are using an analytical expression
for the Euclidean distance to the surface of the primitive. For the super-ellipsoid
we are using a �rst order approximation as described in [54, 1], since there is
no known analytical expression for the Euclidean distance to the surface of the
super-ellipsoid. If f (x) is the algebraic distance to the super-ellipsoid surface,
then a �rst order approximation of the Euclidean distance is given by: f (x )

jr f (x ) j .

For all the examples below with the exception of the sake pot object, we used
the following list of primitives: sphere, cylinder, plane, cone and torus. For the
sake pot, we added the super-ellipsoid. The list of primitives can be extended
by other implicit surface primitives as well.

For each primitive used in our experiments, the number and list of its pa-
rameters are given in Table 1. Parametrization of the cylinder, coneand torus
include parameters for the main axis. An axisa is parametrized using polar co-
ordinates: a = ( cos� sin�; sin� sin�; cos� ), where � 2 [0; 2� ) and � 2 [0; � ) are
the two parameters controlling the axis' direction. Similarly, the vector normal
to a plane is also parametrized using polar coordinates.

Table 1: List of the primitives used in the experiments and their respective
parameters.

Primitive Parameters ] parameters

sphere center, radius 4
cylinder center, axis, radius 6
plane axis, distance 3
torus center, axis, minor radius, major radius 7
cone apex, axis, opening angle 6
super-ellipsoid center, radii, exponents 8

6.3 Experiments on arti�cial data

We applied Algorithm 1 to points sampled on simple objects with known param-
eters values. The goal of this experiment is to check if our algorithmidenti�es
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the correct primitive and in this case to compute the deviation between the �t-
ted values and the original known values of the parameters. For this experiment,
points were randomly sampled on the surface of the following test objects: a
cylinder, a sphere and a torus. Additionally, we have prepared for each point-
set, noisy point-sets obtained by adding Gaussian noise to the original point-set.
Amount of added noise corresponds respectively to: 1%, 2%, 5% and 10% of the
diameter of the cylinder, of the diameter of the sphere and of the tube diameter
for the torus. Parameters deviations from their original values are summarized
in Table 2 for the cylinder, Table 3 for the sphere and Table 4 for the torus.
For this experiment the denoising algorithm, mentioned in section 3.2,was not
used. For all input point-clouds, the list of candidate primitives available to the
algorithm included: sphere, cylinder, plane, torus and cone.

Table 2: Parameters deviations for the �tted cylinders under various noise con-
ditions compared to ground truth. All values (except for nx, ny and nz) have
been rescaled by the cylinder diameter. cx and cy correspond to the center
coordinates. nx, ny and nz de�ne the cylinder axis.

Noise radius cx cy nx ny nz

0% 3.28e-4 3.21e-4 3.6e-4 -1.84e-6 1.98e-5 -1.98e-10
1% 1.97e-4 1.31e-4 1.15e-4 4.00e-4 -5.31e-4 -2.4e-7
2% 2.28e-3 1.04e-3 -2.05e-3 2.34e-3 2.20e-3 -5.16e-6
5% 2.78e-3 -1.73e-3 -1.39e-3 -3.57e-3 -9.52e-4 -6.82e-6
10% 1.12e-2 5.88e-3 3.58e-3 5.38e-3 3.2e-3 -1.96e-5

Table 3: Parameters deviations for the �tted spheres under various noise con-
ditions compared to ground truth. All values have been rescaled bythe sphere
diameter. cx, cy and cz correspond to the center coordinates.

Noise radius cx cy cz

0% -3.53e-4 -3.62e-4 -3.39e-4 -3.48e-4
1% -2.72e-5 -8.31e-4 -4.32e-4 -1.4e-4
2% 8.23e-4 6.47e-5 3.22e-3 1.37e-4
5% -6.35e-4 8.25e-4 1.42e-3 -2.05e-3
10% 2.7e-2 6.58e-3 7.16e-3 -6.28e-3

For this �rst series of experiments, arti�cial Gaussian noise was computed
and added to the original point-set. Gaussian noise is usually employed in
research papers to experimentally test robustness of methods against noise.
However, it was recently shown by Sun et al. in [52] that noise in 3D laser
scanner is not really Gaussian. More experiments are described in the following
with scanned data.

In the next experiment, we have sampled points on an arti�cial CAD object
made by combining implicit surfaces with R-functions used for the set-operations
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Table 4: Parameters deviations for the �tted torii under various n oise conditions
compared to ground truth. All values (except for nx, ny and nz) have been
rescaled by the diameter of the torus tube. cx, cy and cz correspond to the
center coordinates. Min. and maj. radius are the minor and major radius of
the torus. nx, ny and nz correspond to the torus axis.

Noise cx cy cz

0% 1.8e-3 1.8e-3 2.98e-4
1% -9.3e-4 -5.98e-4 -2.08e-4
2% -1.4e-3 -2.32e-3 -8.89e-5
5% -4.2e-3 4.91e-3 7e-5
10% 1.35e-2 7.15e-3 -5.03e-3

min. radius maj. radius nx ny nz

2.98e-4 1.5e-3 -1.7e-7 -7.65e-9 -1.44e-14
-7.9e-5 -6.01e-5 9.19e-5 -1.46e-4 -1.49e-8
1.76e-4 -1.67e-3 2.52e-4 -1.18e-4 -3.87e-8
4.00e-3 3.46e-3 -9.08e-4 5.53e-4 -5.65e-7
9.08e-3 -2.16e-3 3.74e-3 3.36e-4 -7.04e-6

[43, 46]. 20000 points were then randomly sampled on a triangle mesh approx-
imating the surface of this object. The mesh approximating the surface was
obtained by using the Marching Cubes algorithm [36] (we used theisosurface
function in Matlab). The triangle mesh approximation of the object, the corre-
sponding point-set sampled from its surface and the segmentationobtained by
our algorithm are illustrated in Fig. 2.

Figure 2: Arti�cial CAD object. Left: a triangle mesh approximation of the
arti�cial CAD object de�ned by an implicit surface. Middle: points ran domly
sampled on the mesh surface. Right: segmentation of the point-set.

Total processing time for this example is: 50 seconds. The following prim-
itives were correctly identi�ed: a cylinder, planes and a sphere. Thedeviation
between the �tted parameters and the original known parameters values for
each primitive are summarized in the tables below (see Tables 5, 6 and 7). All
deviations given in these tables are rescaled by the length of the cube diagonal.

The results summarized in the preceding tables show that the algorithm is
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Table 5: Parameters deviations for the �tted cylinder compared to ground truth.
cx and cy correspond to the center coordinates. nx, ny and nz are the coordi-
nates of the cylinder axis.

radius cx cy nx ny nz

-5.70e-5 -4.1e-5 2.00e-6 2.17e-5 -1.48e-5 -3.45e-10

Table 6: Parameters deviations for the �tted sphere compared toground truth.
cx, cy and cz correspond to the coordinates of the center.

radius cx cy cz

-1.02e-3 -5.06e-4 1.98e-4 -8.35e-4

Table 7: Parameters deviations for the �tted planes compared to ground truth.
nx, ny and nz correspond to the coordinates of the normal vector to the plane.
d corresponds to the distance to the plane.

nx ny nz d

plane 1 -2.05e-9 5.27e-5 3.63e-5 2.7e-5
plane 2 2.69e-3 -7.65e-6 2.83e-3 1.16e-3
plane 3 1.05e-3 8.05e-4 -8.71e-7 -1.16e-3
plane 4 6.90e-5 -3.97e-9 5.63e-5 -2.6e-5
plane 5 -8.33e-6 3.03e-3 2.73e-3 -5.46e-4
plane 6 2.08e-5 2.92e-5 -6.43e-10 1.12e-3

providing an accurate �t of the primitives' parameters in addition to performing
the segmentation task.

6.4 Experiments with standard objects

We have also applied our algorithm to various standard point-sets illustrated
in Fig. 3, including some CAD objects and freeform models. All these objects
were available as triangle meshes. For each object, a point-set wascreated
by randomly sampling each triangle. These �nite point-sets were then used as
inputs to our algorithm. The original triangle meshes are used only for rendering
and easier visualization of the segmentation results.

Quantitative results from this experiment are summarized in Table 8. For
each model, we give the number of primitives identi�ed and the time taken by
the algorithm to process this object (times include IO processing times such as
reading from or writing to �les).

Segmented point-sets corresponding to these models and produced by our
algorithm are illustrated in Fig. 4. Each segmented subset from the original
point-set is associated to a color randomly selected. The original triangle meshes
are used here for visualization purpose only; each triangle is coloredaccording
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Figure 3: Standard models used to test our segmentation algorithm. From left
to right, top row: coverrear, double-torus, rolling; bottom row: body, sake-pot,
fandisk.

Table 8: Results of the algorithm applied to standard models.

Model ] points ] primitives Time (s)

body 55808 30 247
coverrear 9984 28 200
double-torus 17408 14 40
fandisk 12944 22 100
rolling 18933 21 250
sake-pot 54116 25 245

to the color associated to the points sampled from it.
For objects made exclusively of simple primitives, input point-sets were seg-

mented into subsets with a correctly associated primitive. For example, the
object in the leftmost column in the top row was segmented into point-sets as-
sociated to cylinders and planes only and the object in the middle of the top
row was correctly segmented in subsets corresponding to planes only.

In practice, real models often connect primary surfaces with blend surfaces.
Spherical or cylindrical blend can be identi�ed with our method as part of a
sphere or a cylinder respectively. This can be seen for example in theobjects
in the top row left and bottom row left of Fig. 4.

The sake pot object (bottom row, middle column), which has a more complex
shape, was more di�cult to process. The resulting segmented object is made
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Figure 4: Results of the segmentation algorithm on some standard models. Each
segment is associated to a random color.

mostly of planes, spheres and superellipsoids. At the end of the segmentation,
4392 points out of the 54116 were not classi�ed and each has been associated
to the primitive from the set of already identi�ed primitives that best �ts this
point.

6.5 Experiments with scanned data

Laser scanners can produce data with noise, which in general is notGaussian
[52], and misalignment that can not be properly accounted for in the experiments
described above. In this section, we perform additional tests andapply our
algorithm to data acquired from laser scanners.

The �rst object illustrated in Fig. 5 is made mostly of planar surfaces. The
discrete point-set is shown on the left. The picture in the middle corresponds to
a triangle mesh generated by using the Poisson algorithm of Kazhdanet al. [26]
and is used to give a better understanding of the shape corresponding to the
point-set. Finally, the image on the right corresponds to the resultobtained by
applying our algorithm to the point-set, where each point is randomly colored
depending on the segment it belongs to.

Our algorithm properly identi�es most of the points as belonging to planes.
However the algorithm failed to classify approximately 90000 points out of the
380000 points from the original point-set and also failed to identify some of the
smaller features.

The object illustrated in Fig. 6 consists essentially of planar, cylindrical and
conical parts. For visualization and comparison, the polygonal mesh generated
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Figure 5: Processing of scanned data. From left to right: the original point-set,
a polygonal mesh reconstructed by the Poisson approach of Kazhdan et al and
the output of our algorithm.

by Poisson reconstruction after estimation of the normals is given inthe middle
row. The bottom row shows the point-set after processing by ouralgorithm
(back and front views).

Out of the 280000 points from the original data, 20000 points havenot been
classi�ed. Small features like the end cap of the small cylinders havenot been
processed.

6.6 Analysis

In this section, we investigate the sensitivity of the algorithm to the parameters
controlling the accuracy of the �tting ( � d and � ). We also discuss the inuence
of noise in the input point-set on the results of the algorithm.

6.6.1 Inuence of the parameters � d and �

The parameters� d and � are used for controlling the approximation error when
�tting primitives (in Algorithm 2) and when associating points of the cu rrent
point-set to subsets (in Algorithms 2 and 3).

In order to evaluate the inuence of these parameters, we have run our
algorithm with varying values of � d and � on three models: the arti�cial CAD
model (see Fig. 2), a sphere with Gaussian noise and the coverrearmodel (see
Fig. 3, top row - left image).

For the arti�cial CAD data, we ran our algorithm with several values for � d

and � . First, � was kept �xed at 15 degrees, and� d took the following values:
0:01, 0:005, 0:001, 0:0005, 0:0001, 0:00005 and 0:00001 (all these values need to
be multiplied by the length of the object bounding box diagonal). For all these
values of � d with the exceptions of 0:00005 and 0:00001, the correct primitives
could be recovered for the CAD model. For values 0:00005 and 0:00001, the
algorithm could identify only one primitive (a plane). Using the same CAD
data as input, we kept � d �xed at 0 :007 times the length of the object bounding
box diagonal and made the angle� take the following values: 2, 5, 10, 15 and
20 (all values are in degrees). In this experiment, the correct primitives could
be recovered from the arti�cial CAD model. For � = 25, all primitives except
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Figure 6: Processing of scanned data. From top to bottom: the original point-
set, a polygonal mesh reconstructed by the Poisson approach and the output of
our algorithm.

the sphere were identi�ed correctly; points on the spherical surface were further
segmented in two patches.

In our second experiment, the input point-cloud consists in points sampled
on a sphere with Gaussian noise corresponding to 10% of the diameter of the
sphere. We performed the same experiments as above and ran ouralgorithm
for various values of� d and � . For � = 15 degrees and� d varying, identi�cation
of a sphere failed when� d < 0:005 (no primitives were identi�ed). Deviations
between the identi�ed sphere parameters and the original parameters for � d �
0:005 are summarized in Table 9. For� d �xed at 0 :007, no sphere could be
identi�ed when � < 12 (no primitives were identi�ed). Deviations between the
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�tted parameters of the sphere and the original values for several values of �
are given in Table 10.

Table 9: Deviation between the �tted parameters of the sphere and the original
parameters for di�erent values of � d; � = 15; Gaussian noise corresponding to
10% of the sphere diameter was added to points sampled on the sphere surface.

� d radius cx cy cz

5.00e-3 1.63e-2 7.26e-4 1.37e-3 3.30e-2
7.00e-3 3.11e-3 -5.04e-3 4.60e-4 7.82e-3
1.00e-2 2.84e-2 3.45e-3 1.75e-3 1.61e-2

Table 10: Deviation between the �tted parameters of the sphere and the original
parameters for di�erent values of � ; � d = 0 :007; Gaussian noise corresponding to
10% of the sphere diameter was added to points sampled on the sphere surface.

� radius cx cy cz

12 2.88e-2 8.94e-3 2.02e-2 -7.63e-3
13 2.40e-2 -8.06e-3 -5.90e-3 3.56e-2
14 -3.26e-3 -6.50e-3 4.16e-3 7.90e-3
15 3.11e-3 -5.04e-3 4.6e-4 7.82e-3
20 1.56e-2 1.69e-3 -1.25e-2 3.05e-2

For the last experiment, the leftmost object in the top row of Fig. 3 was
used as input to our algorithm. Again for � = 15 �xed, we made � d vary and
observed the variations in the output of the algorithm. The upper row of Fig.
7 shows the sensitivity of the algorithm to the changes in� d. The lower row of
Fig. 7 shows the sensitivity to changes of� while � d = 0 :007 is �xed. As the
�gure visually shows, the di�erences between the various segmentation results
are small for these values of� d and � .

For small values of� (e.g. 8 degrees in Fig. 7), we can see however that the
result of the segmentation is not completely satisfactory as illustrated by the
zoom in Fig. 8. In the latter picture, there are two problems appearing: �rst
the blend between the two planes in pink and blue is not properly captured. In
all other results (see Fig. 7), three parts are identi�ed corresponding to the two
orthogonal planes and the cylindrical blend between them. The second problem
appearing in the zoomed part in Fig. 8 is the small blend in red identi�ed in
the right while no blend was correctly identi�ed in the left. In the bott om row,
rightmost result shown in Fig. 7, we can see that problems can also occur for
big values of the parameter� . In this case, the planar sides are over-segmented.

Intuitively, � d de�nes the minimum size feature that can be detected. The
parameter � d controls the tolerated deviation between the primitive normal and
the point-set normal.

If � d or � are too small, then the object may be over-segmented. Some
parts may also not be properly segmented as illustrated by Fig. 8. For noisy
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Figure 7: Inuence of � d and � on the resulting segmentation. First row: � d is
equal to 0:0005, 0:001, and 0:005 times the length of the bounding box diagonal.
� is �xed at 15 degree. Second row:� is equal to: 8, 15 and 20 degree.� d is
�xed at 0 :007.

Figure 8: Zoom on the segmented object obtained by setting� = 8 degrees and
� d = 0 :007. For higher values this part is identi�ed as made of two planes and
one cylinder (blending between the two planar parts).

point-sets, values for� d and � need to be slightly higher to handle outliers and
uncertainty in the data. For example for the noisy sphere discussed in this
section, � d needs to be at least 0:005, and� at least 12 degrees. Too high values
for � d and � may a�ect the result of �tting and the segmentation as discussed
above and shown in the bottom-row, rightmost image in Fig. 7.

6.6.2 Inuence of noise in the input data on the algorithm out put

In the previous sections, we have already shown and discussed some of the
results obtained by our algorithm when applied to input data with noise. In the
following, we describe additional qualitative results obtained with the rightmost
object in the bottom row of Fig. 4 corrupted with noise (see the leftmost object
of Fig. 9). The results given below were obtained by using� d = 0 :01 and
� = 20 degree. We used su�ciently large values for both � d and � based on
the previous experiments to account for the noise on the object'ssurface. As
explained previously, the triangle mesh is used for visualization purpose only;
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our algorithm was applied to the point-set obtained by sampling pointson each
triangle.

The middle image in Fig. 9 illustrates the result of the segmentation by our
algorithm without using a denoising pre-processing step. Taking intoaccount
the noise in the input data, the result can be considered as relativelyacceptable.
Nevertheless, we note that the segmentation result di�ers from the result shown
earlier in Fig. 4: the sharp delimitation between the part in purple and the part
in blue is not very well retrieved and some points were not properly identi�ed
(e.g. we can �nd some red triangles in the green and yellow parts).

The rightmost image in Fig. 9 illustrates a slightly improved result obtain ed
by applying a method for denoising the input point-set as a pre-processing step
(see section 3). For the denoising step, we have implemented both algorithms
described by Jones et al. in [25] and by Fleishman et al. in [17] and obtained
similar results in our experiments. The result obtained using denoisinglooks
slightly better especially the blue part between the red and pink segments and
the sharp delimitation between the pink and light brown parts.

Figure 9: Results of our segmentation algorithm applied to a noisy object. Left:
the original object corrupted by severe noise. Middle: the result of our algorithm
without denoising in the pre-processing part. Right: the result of our algorithm
when using a denoising algorithm in the pre-processing part.

6.7 Comparison to other approaches

In Figures 10 and 11, the segmentation of two models from the sections 6.4 and
6.5 are shown. In both �gures the top row corresponds to the results obtained
with our algorithm and the bottom row corresponds to the results obtained with
the e�cient RANSAC approach described in [44].

In general both approaches give similar results. For scanned data, the
RANSAC approach is able to capture smaller features not processed by our
algorithm. For free-form objects like the pot shown in Fig. 10 (right images),
our algorithm gives slightly better results; in this example most of the parts of
the pot are identi�ed as part of super-ellipsoid.

The example used in Fig. 12 shows a more complicated geometry with a
rough surface. Our algorithm seems to produce slightly better result (especially
for the identi�cation of the main body of the vase).
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Figure 10: Qualitative comparison of the segmentation obtained by our algo-
rithm (top row) against the RANSAC approach of Schnabel et al. (bottom row)
[44] for some of the standard models.

7 Conclusion and future works

We have presented in this paper a new algorithm for segmenting a point-set.
The algorithm works by iteratively trying to �t template primitives to t he input
point-set and by removing at each iteration points matching the optimal �tted
primitive from the point-set. We showed that this algorithm can be used with
various types of primitives; for example, the sake pot object is processed using
the super-ellipsoid primitive as one of its template primitives. We tested the
algorithm on arti�cial objects, standard objects and scanned data. We have also
demonstrated the sensitivity of the algorithm to di�erent paramet ers as well as
its behavior when applied to noisy input data.

The main advantage of our algorithm is that it is relatively general and
can work with any type of parametrized primitive for which an approx imate
distance to the surface can be computed. For example, super-ellipsoids were
used in this work; we could also have used primitives like convolution surfaces
or combination of primitives with operations like tapering or twisting.

An approach like the one used in [44] gives similar results for the test models
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Figure 11: Qualitative comparison of the segmentation obtained by our algo-
rithm (top row) against the RANSAC approach for some scanned data.

involving quadrics (plane, cone, torus, cylinder, sphere) howeverit does not seem
possible to extend their approach to other primitives. A recent approach by Li
et al. [35] that involves global consolidation by re-�tting the primitive s with
constraints could be used to improve our approach.

A possible direction for future work consists in investigating algorithms for
connecting together the �tted primitives associated with each subset by using
set-theoretic operations. This problem is related to the problem ofB-Rep to
CSG conversion that was investigated by Shapiro and Vossler [49, 47, 48] and
Buchele and Cartwright [7]. Generation of constructive models fromparame-
terized primitives and re�tting was discussed in [14]. We want also to consider
some additional operations for gluing primitives together in spirit of the ap-
proach used in [41] for gluing local quadrics. Another direction of research is
to investigate the use of di�erent �tting methods for di�erent prim itives. For
example, the methods described in [39] could be used for �tting the quadratic
surfaces in the line 4 of Algorithm 2. Finally, we want to experiment with
additional non traditional primitives such as canal surfaces.
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